Physics

Light Waves and Their Uses by A. A. Michelson

By A. A. Michelson

Show description

Read Online or Download Light Waves and Their Uses PDF

Similar physics books

Elementarteilchenphysik von den Grundlagen zu den modernen Experimenten; mit 51 Tabellen, 88 Übungen mit Lösungshinweisen

Dieses Lehrbuch bietet eine systematische Einf? hrung, von den Grundlagen zu den modernen Experimenten bis hin zu den j? ngsten Entwicklungen des Gebiets. Experimentelle Hilfsmittel wie Beschleuniger und Detektoren werden zu Beginn besprochen. Dann folgen die Symmetrieprinzipien und ihre Anwendungen.

Elements de Mécanique quantique - Tome 1

I Les origines de l. a. Th´eorie quantique
I. 1. Les options de l. a. body classique
(I. 1. 1) constitution corpusculaire de los angeles mati`ere
(I. 1. 2) Nature ondulatoire de los angeles lumi`ere
(I. 1. three) Le d´eterminisme de l. a. body classique
I. 2. Ondes ´electromagn´etiques et quanta de lumi`ere
I. three. l. a. nature ondulatoire de los angeles mati`ere
(I. three. 1) Les spectres de raies et les ondes de Louis de Broglie
(I. three. 2) Description quantique d’une particule libre : le paquet d’ondes
I. four. Dualit´e onde-corpuscule de l. a. lumi`ere et de l. a. mati`ere
I. five. Exercices sur les bases exp´erimentales de l. a. m´ecanique quantique
II Syst`emes quantiques simples
II. 1. Etat quantique d’une particule libre
(II. 1. 1) Fonction d’onde
(II. 1. 2) Courant de probabilit´e
(II. 1. three) Valeur moyenne et ´ecart quadratique moyen
(II. 1. four) Op´erateur “impulsion” dans l’espace des coordonn´ees
II. 2. Particule dans un potentiel ind´ependant du temps
(II. 2. 1) ideas stationnaires
(II. 2. 2) Quantification de l’´energie
II. three. l. a. barri`ere de potentiel finie : l’effet tunnel
II. four. Le puits quantique
II. five. L’oscillateur harmonique
(II. five. 1) M´ethode de r´esolution polynˆomiale
(II. five. 2) M´ethode des op´erateurs de cr´eation et de destruction
II. 6. Appendice : Fonction g´en´eratrice des polynˆomes d’Hermite et oscillateur harmonique
(II. 6. 1) Orthonormalit´e des fonctions 'n(x) de l’oscillateur harmonique
(II. 6. 2) Valeurs moyennes et probabilit´e de transition
III Fondements de los angeles th´eorie quantique
III. 1. Equation de Schr¨odinger et ses propri´et´es
(III. 1. 1) Spectre de l’op´erateur hamiltonien et aspect de vue du calcul vectoriel
(III. 1. 2) Le vecteur d’´etat de l’espace d’Hilbert E et ses propri´et´es
(III. 1. three) Repr´esentation des coordonn´ees |ri
(III. 1. four) Repr´esentation des impulsions |pi
(III. 1. five) formula matricielle : Repr´esentation des ´etats d’´energie
(III. 1. 6) D´eg´en´erescence d’un niveau d’´energie
III. 2. constitution de l’espace de Hilbert "H et produits tensoriels d’espaces
III. three. Le processus de mesure et sa description quantique
(III. three. 1) Commutateurs et grandeurs physiques simultan´ement mesurables
(III. three. 2) Grandeurs physiques non simultan´ement mesurables : G´en´eralisation des kin d’incertitude
de Heisenberg
III. four. L’´equation d’´evolution
III. five. Les diff´erents sch´emas en m´ecanique quantique
(III. five. 1) Le sch´ema de Schr¨odinger
(III. five. 2) Le sch´ema de Heisenberg
(III. five. three) Le sch´ema d’interaction
III. 6. L’op´erateur de densit´e
III. 7. Int´egrale premi`ere et sym´etrie
(III. 7. 1) Observables compatibles et constantes du mouvement
(III. 7. 2) Sym´etrie et constante du mouvement
(III. 7. three) G´en´erateur d’une transformation de sym´etrie
(III. 7. four) Sym´etrie de translation
III. eight. Sym´etrie par rapport aux variations de particules identiques, les “bosons” et les “fermions”
III. nine. M´ethodes d’approximation pour los angeles r´esolution de l’´equation de Schr¨odinger
(III. nine. 1) Th´eorie de perturbation
(III. nine. 2) M´ethode variationnelle lin´eaire
III. 10. Conclusions : Postulats de los angeles body quantique
III. eleven. Appendice : Le cadre math´ematique de l’espace de Hilbert "H
IV Les moments angulaires en th´eorie quantique
IV. 1. Fonctions propres et valeurs propres du second cin´etique orbital : M´ethode polynˆomiale
IV. 2. Sym´etrie de rotation et second angulaire
IV. three. M´ethode alg´ebrique : Les op´erateurs d’´echelle
IV. four. Repr´esentation matricielle des op´erateurs du second angulaire
IV. five. Le spin d’une particule
(IV. five. 1) Le second magn´etique de l’´electron
(IV. five. 2) Exp´erience de Stern et Gerlach
(IV. five. three) Vecteur d’´etat et op´erateur de spin
(IV. five. four) Pr´ecession du spin dans un champ magn´etique
(IV. five. five) Composition de deux moments angulaires
IV. 6. Appendice : Fonctions sp´eciales associ´ees au second angulaire
(IV. 6. 1) Polynˆomes de Legendre
(IV. 6. 2) Les harmoniques sph´eriques
V Particules dans un champ de strength central
V. 1. Le probl`eme de deux particules en th´eorie quantique
(V. 1. 1) Potentiel `a sym´etrie sph´erique
(V. 1. 2) Vibrations et rotations d’une mol´ecule
V. 2. L’atome hydrog´eno¨ıde
(V. 2. 1) Fonction d’onde totale et ses propri´et´es
V. three. constitution fantastic des atomes alcalins
(V. three. 1) Interactions spin-orbite
(V. three. 2) Corrections relativistes
V. four. Effet de Zeeman des atomes alcalins
(V. four. 1) Atome plac´e dans un champ magn´etique quelconque
(V. four. 2) Effet Zeeman anomal
(V. four. three) Effet Paschen-Back
V. five. Etats quantiques de l. a. mol´ecule diatomique
V. 6. Appendice : Propri´et´es des fonctions sp´eciales de l’atome hydrog´eno¨ıde
(V. 6. 1) Les polynˆomes de Laguerre associ´es
VI Transitions entre ´etats stationnaires
VI. 1. Mouvement d’une particule charg´ee soumise `a un champ ´electromagn´etique
(VI. 1. 1) Le hamiltonien du syst`eme
(VI. 1. 2) motion d’un champ magn´etique constant
(VI. 1. three) Invariance de jauge
VI. 2. Perturbations non stationnaires
(VI. 2. 1) R`egle d’or de Fermi
VI. three. Le rayonnement dipolaire
VI. four. Corrections multipolaires
VI. five. Expression quantique des coefficients d’Einstein
VI. 6. Coefficients d’absorption
VI. 7. R`egles de s´election et le spectre optique d’atome `a un ´electron
(VI. 7. 1) Les r`egles de s´election d’un oscillateur harmonique et d’un atome hydrog´eno¨ıde r´ealiste
VII creation `a los angeles th´eorie quantique non-relativiste des syst`emes
de particules identiques
VII. 1. Le formalisme g´en´eral
VII. 2. program `a l’atome d’h´elium
(VII. 2. 1) interplay d’´echange et magn´etisme
VII. three. L’approximation du champ self-consistant de Hartree et de Hartree-Fock
VIII advent `a l. a. th´eorie quantique de los angeles diffusion par un
potentiel
VIII. 1. part efficace de diffusion
(VIII. 1. 1) part efficace diff´erentielle dans le syst`eme du laboratoire
(VIII. 1. 2) Interpr´etation classique et loi de Rutherford
VIII. 2. Traitement stationnaire
(VIII. 2. 1) Equation int´egrale de l. a. diffusion et resolution “approch´ee” : “Approximation de Born”
(VIII. 2. 2) Le r`egle d’Or de Fermi et l’approximation de Born
(VIII. 2. three) M´ethode des ondes partielles
Livres de r´ef´erence
– J. L. Basdevant, M´ecanique quantique, ellipses, 1986.
– J. Hladik, M´ecanique quantique, ´editions Masson, Paris, 1997.
Bibliographie
– D. Blokintsev, Principes de m´ecanique quantique, ´editions Mir, Moscou, 1981.
– J. M. L´evy-Leblond, F. Balibar, Quantique. Rudiments, Inter-Editions, Paris, 1984.
– Cl. Cohen-Tannoudji, B. Diu, F. Lalo¨e, M´ecanique quantique, tomes I & II, Hermann, 1980.
– E. Merzbacher, Quantum Mechanics, John Wiley, third ed. , 1998.
– S. Gasiorowicz, Quantum Physics, John Wiley, 1997.
– L. D. Landau, E. M. Lifshitz, Quantum Mechanics, Pergamon Press, third ed. , 1981.
– V. ok. Thankappan, Quantum Mechanics, John Wiley, 2d ed. , 1993.
– A. B. Wolbarst, Symmetry and Quantum Mechanics, Van Nostrand Reinhold Comp. , 1977.
– W. Louisell, Radiation and noise in Quantum Electronics, McGraw-Hill, 1964.
– A. Z. Capri, Nonrelativistic Quantum Mechanics, Benjamin/Cummings, 1985.
– J. J. Sakurai, smooth Quantum Mechanics, Benjamin/Cummings, 1985.
– W. Greiner, B. M¨uller, Quantum Mechanics, vol. I & II, Hermann, 1980.
– T. Fliessbach, Quantenmechanik, Spektrum Akademischer Verlag, 1995.
– R. W. Robinett, Quantum Mechanics, Oxford collage Press, 1997.

Extra info for Light Waves and Their Uses

Example text

Die rechte Seite der Gl. 84 48 3 Die Maxwellschen Gleichungen Die Minuszeichen in Gl. 84 ruhren wieder daher, da der auf die Ladungsund Stromverteilung ubertragene Impuls einer Abnahme des elektromagnetischen Feldimpulses entspricht. 87 0 O enbar ist die Impulsdichte des elektromagnetischen Feldes bis auf einen Faktor 1=c2 identisch mit dessen Energiestromdichte, also mit dem Poynting-Vektor siehe Gl. 60, wahrend sich die Impulsstromdichte, wie in Kapitel 2 erlautert, auch als Drucktensor interpretieren lat.

2 bzw. 3 unter Paritats- und Zeitumkehrtransformationen folgendes Transformationsverhalten von E und B : Et; x Bt; x Et; x T : B t; x P: ! ! 19 Also ist E ein polares Vektorfeld und B ein axiales Vektorfeld. Mit Hilfe des Sternoperators kann man sich ferner davon uberzeugen, da ein polares Vektorfeld einer 1-Form entspricht, wahrend ein axiales Vektorfeld durch Anwendung des Sternoperators auf eine 2-Form entsteht. 24-c ohne jeden Bezug auf eine Metrik oder eine Orientierung schreiben lassen.

4-b Z Z @ B , k2 df  @t = dx  E : F Damit liefert Gl. 11 fur die rechte Seite des Induktionsgesetzes Z Z ,  d , k2 dt df  B = dx  E + k2 v  B : F Andererseits ist aber, zu einem festen Zeitpunkt t, die in der Leiterschleife induzierte Ringspannung gleich der virtuellen Arbeit, die erforderlich ist, um eine auf der Leiterschleife be ndliche Punktladung q einmal um diese herumzufuhren, dividiert durch q. 2, Uind = Z ,  dx  E +  v  B : Damit ist die Behauptung bewiesen: Gl. 10 gilt allgemein, auch fur beliebig bewegte Leiterschleifen, genau dann, wenn k2 =.

Download PDF sample

Rated 4.90 of 5 – based on 9 votes