Physics

Finite Element Method Electromagnetics: Antennas, Microwave by John L. Volakis, Arindam Chatterjee, Leo C. Kempel

By John L. Volakis, Arindam Chatterjee, Leo C. Kempel

Hired in lots of advertisement electromagnetic simulation applications, the finite aspect strategy is likely one of the preferred and well-established numerical recommendations in engineering. This ebook covers the idea, improvement, implementation, and alertness of the finite aspect strategy and its hybrid models to electromagnetics. FINITE point process FOR ELECTROMAGNETICS starts off with a step by step textbook presentation of the finite technique and its diversifications then is going directly to offer up to date assurance of 3 dimensional formulations and sleek purposes to open and closed area difficulties. labored out examples are integrated to help the reader with the advantageous positive factors of the strategy and the implementation of its hybridization with different thoughts for a powerful simulation of enormous scale radiation and scattering. The the most important therapy of neighborhood boundary stipulations is punctiliously labored out in numerous levels within the publication.
backed by:
IEEE Antennas and Propagation Society.

Show description

Read or Download Finite Element Method Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications (IEEE Press Series on Electromagnetic Wave Theory) PDF

Best physics books

Elementarteilchenphysik von den Grundlagen zu den modernen Experimenten; mit 51 Tabellen, 88 Übungen mit Lösungshinweisen

Dieses Lehrbuch bietet eine systematische Einf? hrung, von den Grundlagen zu den modernen Experimenten bis hin zu den j? ngsten Entwicklungen des Gebiets. Experimentelle Hilfsmittel wie Beschleuniger und Detektoren werden zu Beginn besprochen. Dann folgen die Symmetrieprinzipien und ihre Anwendungen.

Elements de Mécanique quantique - Tome 1

I Les origines de l. a. Th´eorie quantique
I. 1. Les recommendations de l. a. body classique
(I. 1. 1) constitution corpusculaire de l. a. mati`ere
(I. 1. 2) Nature ondulatoire de los angeles lumi`ere
(I. 1. three) Le d´eterminisme de l. a. body classique
I. 2. Ondes ´electromagn´etiques et quanta de lumi`ere
I. three. los angeles nature ondulatoire de l. a. mati`ere
(I. three. 1) Les spectres de raies et les ondes de Louis de Broglie
(I. three. 2) Description quantique d’une particule libre : le paquet d’ondes
I. four. Dualit´e onde-corpuscule de l. a. lumi`ere et de los angeles mati`ere
I. five. Exercices sur les bases exp´erimentales de l. a. m´ecanique quantique
II Syst`emes quantiques simples
II. 1. Etat quantique d’une particule libre
(II. 1. 1) Fonction d’onde
(II. 1. 2) Courant de probabilit´e
(II. 1. three) Valeur moyenne et ´ecart quadratique moyen
(II. 1. four) Op´erateur “impulsion” dans l’espace des coordonn´ees
II. 2. Particule dans un potentiel ind´ependant du temps
(II. 2. 1) recommendations stationnaires
(II. 2. 2) Quantification de l’´energie
II. three. l. a. barri`ere de potentiel finie : l’effet tunnel
II. four. Le puits quantique
II. five. L’oscillateur harmonique
(II. five. 1) M´ethode de r´esolution polynˆomiale
(II. five. 2) M´ethode des op´erateurs de cr´eation et de destruction
II. 6. Appendice : Fonction g´en´eratrice des polynˆomes d’Hermite et oscillateur harmonique
(II. 6. 1) Orthonormalit´e des fonctions 'n(x) de l’oscillateur harmonique
(II. 6. 2) Valeurs moyennes et probabilit´e de transition
III Fondements de l. a. th´eorie quantique
III. 1. Equation de Schr¨odinger et ses propri´et´es
(III. 1. 1) Spectre de l’op´erateur hamiltonien et aspect de vue du calcul vectoriel
(III. 1. 2) Le vecteur d’´etat de l’espace d’Hilbert E et ses propri´et´es
(III. 1. three) Repr´esentation des coordonn´ees |ri
(III. 1. four) Repr´esentation des impulsions |pi
(III. 1. five) formula matricielle : Repr´esentation des ´etats d’´energie
(III. 1. 6) D´eg´en´erescence d’un niveau d’´energie
III. 2. constitution de l’espace de Hilbert "H et produits tensoriels d’espaces
III. three. Le processus de mesure et sa description quantique
(III. three. 1) Commutateurs et grandeurs physiques simultan´ement mesurables
(III. three. 2) Grandeurs physiques non simultan´ement mesurables : G´en´eralisation des family d’incertitude
de Heisenberg
III. four. L’´equation d’´evolution
III. five. Les diff´erents sch´emas en m´ecanique quantique
(III. five. 1) Le sch´ema de Schr¨odinger
(III. five. 2) Le sch´ema de Heisenberg
(III. five. three) Le sch´ema d’interaction
III. 6. L’op´erateur de densit´e
III. 7. Int´egrale premi`ere et sym´etrie
(III. 7. 1) Observables compatibles et constantes du mouvement
(III. 7. 2) Sym´etrie et constante du mouvement
(III. 7. three) G´en´erateur d’une transformation de sym´etrie
(III. 7. four) Sym´etrie de translation
III. eight. Sym´etrie par rapport aux diversifications de particules identiques, les “bosons” et les “fermions”
III. nine. M´ethodes d’approximation pour los angeles r´esolution de l’´equation de Schr¨odinger
(III. nine. 1) Th´eorie de perturbation
(III. nine. 2) M´ethode variationnelle lin´eaire
III. 10. Conclusions : Postulats de l. a. body quantique
III. eleven. Appendice : Le cadre math´ematique de l’espace de Hilbert "H
IV Les moments angulaires en th´eorie quantique
IV. 1. Fonctions propres et valeurs propres du second cin´etique orbital : M´ethode polynˆomiale
IV. 2. Sym´etrie de rotation et second angulaire
IV. three. M´ethode alg´ebrique : Les op´erateurs d’´echelle
IV. four. Repr´esentation matricielle des op´erateurs du second angulaire
IV. five. Le spin d’une particule
(IV. five. 1) Le second magn´etique de l’´electron
(IV. five. 2) Exp´erience de Stern et Gerlach
(IV. five. three) Vecteur d’´etat et op´erateur de spin
(IV. five. four) Pr´ecession du spin dans un champ magn´etique
(IV. five. five) Composition de deux moments angulaires
IV. 6. Appendice : Fonctions sp´eciales associ´ees au second angulaire
(IV. 6. 1) Polynˆomes de Legendre
(IV. 6. 2) Les harmoniques sph´eriques
V Particules dans un champ de strength central
V. 1. Le probl`eme de deux particules en th´eorie quantique
(V. 1. 1) Potentiel `a sym´etrie sph´erique
(V. 1. 2) Vibrations et rotations d’une mol´ecule
V. 2. L’atome hydrog´eno¨ıde
(V. 2. 1) Fonction d’onde totale et ses propri´et´es
V. three. constitution positive des atomes alcalins
(V. three. 1) Interactions spin-orbite
(V. three. 2) Corrections relativistes
V. four. Effet de Zeeman des atomes alcalins
(V. four. 1) Atome plac´e dans un champ magn´etique quelconque
(V. four. 2) Effet Zeeman anomal
(V. four. three) Effet Paschen-Back
V. five. Etats quantiques de los angeles mol´ecule diatomique
V. 6. Appendice : Propri´et´es des fonctions sp´eciales de l’atome hydrog´eno¨ıde
(V. 6. 1) Les polynˆomes de Laguerre associ´es
VI Transitions entre ´etats stationnaires
VI. 1. Mouvement d’une particule charg´ee soumise `a un champ ´electromagn´etique
(VI. 1. 1) Le hamiltonien du syst`eme
(VI. 1. 2) motion d’un champ magn´etique constant
(VI. 1. three) Invariance de jauge
VI. 2. Perturbations non stationnaires
(VI. 2. 1) R`egle d’or de Fermi
VI. three. Le rayonnement dipolaire
VI. four. Corrections multipolaires
VI. five. Expression quantique des coefficients d’Einstein
VI. 6. Coefficients d’absorption
VI. 7. R`egles de s´election et le spectre optique d’atome `a un ´electron
(VI. 7. 1) Les r`egles de s´election d’un oscillateur harmonique et d’un atome hydrog´eno¨ıde r´ealiste
VII advent `a los angeles th´eorie quantique non-relativiste des syst`emes
de particules identiques
VII. 1. Le formalisme g´en´eral
VII. 2. software `a l’atome d’h´elium
(VII. 2. 1) interplay d’´echange et magn´etisme
VII. three. L’approximation du champ self-consistant de Hartree et de Hartree-Fock
VIII advent `a l. a. th´eorie quantique de los angeles diffusion par un
potentiel
VIII. 1. part efficace de diffusion
(VIII. 1. 1) part efficace diff´erentielle dans le syst`eme du laboratoire
(VIII. 1. 2) Interpr´etation classique et loi de Rutherford
VIII. 2. Traitement stationnaire
(VIII. 2. 1) Equation int´egrale de l. a. diffusion et resolution “approch´ee” : “Approximation de Born”
(VIII. 2. 2) Le r`egle d’Or de Fermi et l’approximation de Born
(VIII. 2. three) M´ethode des ondes partielles
Livres de r´ef´erence
– J. L. Basdevant, M´ecanique quantique, ellipses, 1986.
– J. Hladik, M´ecanique quantique, ´editions Masson, Paris, 1997.
Bibliographie
– D. Blokintsev, Principes de m´ecanique quantique, ´editions Mir, Moscou, 1981.
– J. M. L´evy-Leblond, F. Balibar, Quantique. Rudiments, Inter-Editions, Paris, 1984.
– Cl. Cohen-Tannoudji, B. Diu, F. Lalo¨e, M´ecanique quantique, tomes I & II, Hermann, 1980.
– E. Merzbacher, Quantum Mechanics, John Wiley, third ed. , 1998.
– S. Gasiorowicz, Quantum Physics, John Wiley, 1997.
– L. D. Landau, E. M. Lifshitz, Quantum Mechanics, Pergamon Press, third ed. , 1981.
– V. ok. Thankappan, Quantum Mechanics, John Wiley, 2d ed. , 1993.
– A. B. Wolbarst, Symmetry and Quantum Mechanics, Van Nostrand Reinhold Comp. , 1977.
– W. Louisell, Radiation and noise in Quantum Electronics, McGraw-Hill, 1964.
– A. Z. Capri, Nonrelativistic Quantum Mechanics, Benjamin/Cummings, 1985.
– J. J. Sakurai, sleek Quantum Mechanics, Benjamin/Cummings, 1985.
– W. Greiner, B. M¨uller, Quantum Mechanics, vol. I & II, Hermann, 1980.
– T. Fliessbach, Quantenmechanik, Spektrum Akademischer Verlag, 1995.
– R. W. Robinett, Quantum Mechanics, Oxford collage Press, 1997.

Extra info for Finite Element Method Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications (IEEE Press Series on Electromagnetic Wave Theory)

Example text

38). Here we include it in an effective way, as a parameter to suitably conform to different experimental physical situations. We stress as, in general, the linear term of the Langevin equation Eq. 50) may have nonzero off-diagonal terms. They are all zero when the frequencies are all different and well spaced, ω δω, so that the frequencies matching condition of the linear term is never satisfied. While this is generally true for standard high quality-factor lasers,3 for random lasers in general there can be a significant frequency overlap between the lasing modes.

31) The previous system of equations can be reduced to a systems of equations of the field modes alone using a perturbation theory in the modes amplitude. For later convenience we define here D (ω) ≡ 1 − i ω γ −1 , D(ω) ≡ 1 − i ω − ωa γ⊥ −1 , A≡− 1 . 32) One starts neglecting the quadratic term in Eq. 31) so that the zeroth-order it is (note that D (ω)δ(ω) = δ(ω)) f (0) (ω) = 1 Sρδ(ω) . 33) Replacing this expression in Eq. 34) μ this expression can then be replaced back in Eq. 31) and so obtain the second order f (2) (ω) = A Sρ D (ω) 2π μ gμ∗ 1 gμ2 1 μ2 dω1 aμ∗ 1 (−ω + ω1 )D(ω1 )aμ2 (ω1 ) .

Phys. Rev. A 40, 5073–5080, (1989) 22. I. Deych, Effects of spatial nonuniformity on laser dynamics. Phys. Rev. Lett. 95, 043902, (2005) 38 2 Multimode Laser Theory for Open Cavities 23. M. , Large petermann factor in chaotic cavities with many scattering channels. EPL (Europhys. ) 49(1), 48 (2000) 24. M. Leonetti, C. Conti, C. Lopez, Switching and amplification in disordered lasing resonators. Nat. Commun. 4, 1740 (2013) 25. G. Hackenbroich, Statistical theory of multimode random lasers. J. Phys.

Download PDF sample

Rated 4.99 of 5 – based on 13 votes