Physics

Few-Body Problems in Physics ’95: In memoriam Professor Paul by W. Plessas (auth.), Dr. Rafael Guardiola (eds.)

By W. Plessas (auth.), Dr. Rafael Guardiola (eds.)

This e-book collects invited papers and contributions to the panel periods, awarded on the fifteenth ecu convention on Few-Body Physics held in Peniscola, Spain, June 5-9, 1995. the most subject matters taken care of are the theoretical technique, the experimental measurements and destiny plans, the unique atomic platforms, the subnuclear levels of freedom and the position of relativistic results in few-body platforms.

Show description

Read or Download Few-Body Problems in Physics ’95: In memoriam Professor Paul Urban PDF

Similar physics books

Elementarteilchenphysik von den Grundlagen zu den modernen Experimenten; mit 51 Tabellen, 88 Übungen mit Lösungshinweisen

Dieses Lehrbuch bietet eine systematische Einf? hrung, von den Grundlagen zu den modernen Experimenten bis hin zu den j? ngsten Entwicklungen des Gebiets. Experimentelle Hilfsmittel wie Beschleuniger und Detektoren werden zu Beginn besprochen. Dann folgen die Symmetrieprinzipien und ihre Anwendungen.

Elements de Mécanique quantique - Tome 1

I Les origines de l. a. Th´eorie quantique
I. 1. Les strategies de los angeles body classique
(I. 1. 1) constitution corpusculaire de los angeles mati`ere
(I. 1. 2) Nature ondulatoire de los angeles lumi`ere
(I. 1. three) Le d´eterminisme de los angeles body classique
I. 2. Ondes ´electromagn´etiques et quanta de lumi`ere
I. three. l. a. nature ondulatoire de l. a. mati`ere
(I. three. 1) Les spectres de raies et les ondes de Louis de Broglie
(I. three. 2) Description quantique d’une particule libre : le paquet d’ondes
I. four. Dualit´e onde-corpuscule de los angeles lumi`ere et de l. a. mati`ere
I. five. Exercices sur les bases exp´erimentales de los angeles m´ecanique quantique
II Syst`emes quantiques simples
II. 1. Etat quantique d’une particule libre
(II. 1. 1) Fonction d’onde
(II. 1. 2) Courant de probabilit´e
(II. 1. three) Valeur moyenne et ´ecart quadratique moyen
(II. 1. four) Op´erateur “impulsion” dans l’espace des coordonn´ees
II. 2. Particule dans un potentiel ind´ependant du temps
(II. 2. 1) ideas stationnaires
(II. 2. 2) Quantification de l’´energie
II. three. l. a. barri`ere de potentiel finie : l’effet tunnel
II. four. Le puits quantique
II. five. L’oscillateur harmonique
(II. five. 1) M´ethode de r´esolution polynˆomiale
(II. five. 2) M´ethode des op´erateurs de cr´eation et de destruction
II. 6. Appendice : Fonction g´en´eratrice des polynˆomes d’Hermite et oscillateur harmonique
(II. 6. 1) Orthonormalit´e des fonctions 'n(x) de l’oscillateur harmonique
(II. 6. 2) Valeurs moyennes et probabilit´e de transition
III Fondements de los angeles th´eorie quantique
III. 1. Equation de Schr¨odinger et ses propri´et´es
(III. 1. 1) Spectre de l’op´erateur hamiltonien et element de vue du calcul vectoriel
(III. 1. 2) Le vecteur d’´etat de l’espace d’Hilbert E et ses propri´et´es
(III. 1. three) Repr´esentation des coordonn´ees |ri
(III. 1. four) Repr´esentation des impulsions |pi
(III. 1. five) formula matricielle : Repr´esentation des ´etats d’´energie
(III. 1. 6) D´eg´en´erescence d’un niveau d’´energie
III. 2. constitution de l’espace de Hilbert "H et produits tensoriels d’espaces
III. three. Le processus de mesure et sa description quantique
(III. three. 1) Commutateurs et grandeurs physiques simultan´ement mesurables
(III. three. 2) Grandeurs physiques non simultan´ement mesurables : G´en´eralisation des relatives d’incertitude
de Heisenberg
III. four. L’´equation d’´evolution
III. five. Les diff´erents sch´emas en m´ecanique quantique
(III. five. 1) Le sch´ema de Schr¨odinger
(III. five. 2) Le sch´ema de Heisenberg
(III. five. three) Le sch´ema d’interaction
III. 6. L’op´erateur de densit´e
III. 7. Int´egrale premi`ere et sym´etrie
(III. 7. 1) Observables compatibles et constantes du mouvement
(III. 7. 2) Sym´etrie et constante du mouvement
(III. 7. three) G´en´erateur d’une transformation de sym´etrie
(III. 7. four) Sym´etrie de translation
III. eight. Sym´etrie par rapport aux diversifications de particules identiques, les “bosons” et les “fermions”
III. nine. M´ethodes d’approximation pour l. a. r´esolution de l’´equation de Schr¨odinger
(III. nine. 1) Th´eorie de perturbation
(III. nine. 2) M´ethode variationnelle lin´eaire
III. 10. Conclusions : Postulats de l. a. body quantique
III. eleven. Appendice : Le cadre math´ematique de l’espace de Hilbert "H
IV Les moments angulaires en th´eorie quantique
IV. 1. Fonctions propres et valeurs propres du second cin´etique orbital : M´ethode polynˆomiale
IV. 2. Sym´etrie de rotation et second angulaire
IV. three. M´ethode alg´ebrique : Les op´erateurs d’´echelle
IV. four. Repr´esentation matricielle des op´erateurs du second angulaire
IV. five. Le spin d’une particule
(IV. five. 1) Le second magn´etique de l’´electron
(IV. five. 2) Exp´erience de Stern et Gerlach
(IV. five. three) Vecteur d’´etat et op´erateur de spin
(IV. five. four) Pr´ecession du spin dans un champ magn´etique
(IV. five. five) Composition de deux moments angulaires
IV. 6. Appendice : Fonctions sp´eciales associ´ees au second angulaire
(IV. 6. 1) Polynˆomes de Legendre
(IV. 6. 2) Les harmoniques sph´eriques
V Particules dans un champ de strength central
V. 1. Le probl`eme de deux particules en th´eorie quantique
(V. 1. 1) Potentiel `a sym´etrie sph´erique
(V. 1. 2) Vibrations et rotations d’une mol´ecule
V. 2. L’atome hydrog´eno¨ıde
(V. 2. 1) Fonction d’onde totale et ses propri´et´es
V. three. constitution high-quality des atomes alcalins
(V. three. 1) Interactions spin-orbite
(V. three. 2) Corrections relativistes
V. four. Effet de Zeeman des atomes alcalins
(V. four. 1) Atome plac´e dans un champ magn´etique quelconque
(V. four. 2) Effet Zeeman anomal
(V. four. three) Effet Paschen-Back
V. five. Etats quantiques de l. a. mol´ecule diatomique
V. 6. Appendice : Propri´et´es des fonctions sp´eciales de l’atome hydrog´eno¨ıde
(V. 6. 1) Les polynˆomes de Laguerre associ´es
VI Transitions entre ´etats stationnaires
VI. 1. Mouvement d’une particule charg´ee soumise `a un champ ´electromagn´etique
(VI. 1. 1) Le hamiltonien du syst`eme
(VI. 1. 2) motion d’un champ magn´etique constant
(VI. 1. three) Invariance de jauge
VI. 2. Perturbations non stationnaires
(VI. 2. 1) R`egle d’or de Fermi
VI. three. Le rayonnement dipolaire
VI. four. Corrections multipolaires
VI. five. Expression quantique des coefficients d’Einstein
VI. 6. Coefficients d’absorption
VI. 7. R`egles de s´election et le spectre optique d’atome `a un ´electron
(VI. 7. 1) Les r`egles de s´election d’un oscillateur harmonique et d’un atome hydrog´eno¨ıde r´ealiste
VII creation `a l. a. th´eorie quantique non-relativiste des syst`emes
de particules identiques
VII. 1. Le formalisme g´en´eral
VII. 2. software `a l’atome d’h´elium
(VII. 2. 1) interplay d’´echange et magn´etisme
VII. three. L’approximation du champ self-consistant de Hartree et de Hartree-Fock
VIII creation `a los angeles th´eorie quantique de los angeles diffusion par un
potentiel
VIII. 1. part efficace de diffusion
(VIII. 1. 1) part efficace diff´erentielle dans le syst`eme du laboratoire
(VIII. 1. 2) Interpr´etation classique et loi de Rutherford
VIII. 2. Traitement stationnaire
(VIII. 2. 1) Equation int´egrale de l. a. diffusion et resolution “approch´ee” : “Approximation de Born”
(VIII. 2. 2) Le r`egle d’Or de Fermi et l’approximation de Born
(VIII. 2. three) M´ethode des ondes partielles
Livres de r´ef´erence
– J. L. Basdevant, M´ecanique quantique, ellipses, 1986.
– J. Hladik, M´ecanique quantique, ´editions Masson, Paris, 1997.
Bibliographie
– D. Blokintsev, Principes de m´ecanique quantique, ´editions Mir, Moscou, 1981.
– J. M. L´evy-Leblond, F. Balibar, Quantique. Rudiments, Inter-Editions, Paris, 1984.
– Cl. Cohen-Tannoudji, B. Diu, F. Lalo¨e, M´ecanique quantique, tomes I & II, Hermann, 1980.
– E. Merzbacher, Quantum Mechanics, John Wiley, third ed. , 1998.
– S. Gasiorowicz, Quantum Physics, John Wiley, 1997.
– L. D. Landau, E. M. Lifshitz, Quantum Mechanics, Pergamon Press, third ed. , 1981.
– V. ok. Thankappan, Quantum Mechanics, John Wiley, second ed. , 1993.
– A. B. Wolbarst, Symmetry and Quantum Mechanics, Van Nostrand Reinhold Comp. , 1977.
– W. Louisell, Radiation and noise in Quantum Electronics, McGraw-Hill, 1964.
– A. Z. Capri, Nonrelativistic Quantum Mechanics, Benjamin/Cummings, 1985.
– J. J. Sakurai, glossy Quantum Mechanics, Benjamin/Cummings, 1985.
– W. Greiner, B. M¨uller, Quantum Mechanics, vol. I & II, Hermann, 1980.
– T. Fliessbach, Quantenmechanik, Spektrum Akademischer Verlag, 1995.
– R. W. Robinett, Quantum Mechanics, Oxford collage Press, 1997.

Additional info for Few-Body Problems in Physics ’95: In memoriam Professor Paul Urban

Example text

Since the 3NF's were used in combination with Bonn B, which leads to overbinding in the triton, we possibly even overestimate their effects in the 3N continuum. On top they are found to be small in general. They are negligible for (Ttot, ;;; and T 2o , T21 , T22 in elastic scattering. Some effects are predicted for C x x , C yy , K~', Kt', K{ and the n-d polarisation transfer coefficients. For Ay the effect 19 worsens the description, see Fig. 10. For the breakup only the specific angular dependence of the FSI peak heights stick out.

The ratios of the integrals of the unpolarized and polarized responses to the PWIA response are given in the table . 0 (MeV) Figure 4. Weight functions in imaginary- and real-time corresponding to the sums given in Table 1 (see text). nearly unaffected by the two-body corrections to the charge operator. The transverse response is slightly quenched for impulse current operators, and slightly enhanced when exchange currents are included. The calculated transverse response is roughly 10% larger than the experimental results at 400 MeV Ie.

As it can be seen by inspection ofthe table, a good convergence is obtained for both cases. When only a limited number of terms is included in the expansion, the estimates given by the two variational principles are quite different. However, as Nu is increased, they converge to the same value, ensuring the good quality of the calculation. 4 fm [35]. Calculations for different energies are in progress. 4 Conclusion The method of expanding the wave function of few-nucleon systems on a correlated hyperspherical harmonic basis is quite successful for the calculation of the properties of the bound and elastic scattering states.

Download PDF sample

Rated 4.71 of 5 – based on 22 votes