Physics

A Primer on the Physics of the Cosmic Microwave Background by Massimo Giovannini

By Massimo Giovannini

Within the final fifteen years, quite a few parts of excessive power physics, astrophysics and theoretical physics have converged at the examine of cosmology in order that any graduate scholar in those disciplines this day wishes a pretty self-contained advent to the Cosmic Microwave history (CMB). This booklet provides the fundamental theoretical instruments essential to collect a contemporary operating wisdom of CMB physics. the fashion of the ebook, falling someplace among a monograph and a collection of lecture notes, is pedagogical and the writer makes use of the common process of theoretical physics to give an explanation for the most difficulties intimately, referring to the most assumptions and derivations of a desirable topic.

Show description

Read or Download A Primer on the Physics of the Cosmic Microwave Background (2008)(en)(464s) PDF

Best physics books

Elementarteilchenphysik von den Grundlagen zu den modernen Experimenten; mit 51 Tabellen, 88 Übungen mit Lösungshinweisen

Dieses Lehrbuch bietet eine systematische Einf? hrung, von den Grundlagen zu den modernen Experimenten bis hin zu den j? ngsten Entwicklungen des Gebiets. Experimentelle Hilfsmittel wie Beschleuniger und Detektoren werden zu Beginn besprochen. Dann folgen die Symmetrieprinzipien und ihre Anwendungen.

Elements de Mécanique quantique - Tome 1

I Les origines de los angeles Th´eorie quantique
I. 1. Les recommendations de l. a. body classique
(I. 1. 1) constitution corpusculaire de l. a. mati`ere
(I. 1. 2) Nature ondulatoire de l. a. lumi`ere
(I. 1. three) Le d´eterminisme de l. a. body classique
I. 2. Ondes ´electromagn´etiques et quanta de lumi`ere
I. three. l. a. nature ondulatoire de los angeles mati`ere
(I. three. 1) Les spectres de raies et les ondes de Louis de Broglie
(I. three. 2) Description quantique d’une particule libre : le paquet d’ondes
I. four. Dualit´e onde-corpuscule de los angeles lumi`ere et de l. a. mati`ere
I. five. Exercices sur les bases exp´erimentales de los angeles m´ecanique quantique
II Syst`emes quantiques simples
II. 1. Etat quantique d’une particule libre
(II. 1. 1) Fonction d’onde
(II. 1. 2) Courant de probabilit´e
(II. 1. three) Valeur moyenne et ´ecart quadratique moyen
(II. 1. four) Op´erateur “impulsion” dans l’espace des coordonn´ees
II. 2. Particule dans un potentiel ind´ependant du temps
(II. 2. 1) recommendations stationnaires
(II. 2. 2) Quantification de l’´energie
II. three. los angeles barri`ere de potentiel finie : l’effet tunnel
II. four. Le puits quantique
II. five. L’oscillateur harmonique
(II. five. 1) M´ethode de r´esolution polynˆomiale
(II. five. 2) M´ethode des op´erateurs de cr´eation et de destruction
II. 6. Appendice : Fonction g´en´eratrice des polynˆomes d’Hermite et oscillateur harmonique
(II. 6. 1) Orthonormalit´e des fonctions 'n(x) de l’oscillateur harmonique
(II. 6. 2) Valeurs moyennes et probabilit´e de transition
III Fondements de l. a. th´eorie quantique
III. 1. Equation de Schr¨odinger et ses propri´et´es
(III. 1. 1) Spectre de l’op´erateur hamiltonien et element de vue du calcul vectoriel
(III. 1. 2) Le vecteur d’´etat de l’espace d’Hilbert E et ses propri´et´es
(III. 1. three) Repr´esentation des coordonn´ees |ri
(III. 1. four) Repr´esentation des impulsions |pi
(III. 1. five) formula matricielle : Repr´esentation des ´etats d’´energie
(III. 1. 6) D´eg´en´erescence d’un niveau d’´energie
III. 2. constitution de l’espace de Hilbert "H et produits tensoriels d’espaces
III. three. Le processus de mesure et sa description quantique
(III. three. 1) Commutateurs et grandeurs physiques simultan´ement mesurables
(III. three. 2) Grandeurs physiques non simultan´ement mesurables : G´en´eralisation des relatives d’incertitude
de Heisenberg
III. four. L’´equation d’´evolution
III. five. Les diff´erents sch´emas en m´ecanique quantique
(III. five. 1) Le sch´ema de Schr¨odinger
(III. five. 2) Le sch´ema de Heisenberg
(III. five. three) Le sch´ema d’interaction
III. 6. L’op´erateur de densit´e
III. 7. Int´egrale premi`ere et sym´etrie
(III. 7. 1) Observables compatibles et constantes du mouvement
(III. 7. 2) Sym´etrie et constante du mouvement
(III. 7. three) G´en´erateur d’une transformation de sym´etrie
(III. 7. four) Sym´etrie de translation
III. eight. Sym´etrie par rapport aux variations de particules identiques, les “bosons” et les “fermions”
III. nine. M´ethodes d’approximation pour l. a. r´esolution de l’´equation de Schr¨odinger
(III. nine. 1) Th´eorie de perturbation
(III. nine. 2) M´ethode variationnelle lin´eaire
III. 10. Conclusions : Postulats de los angeles body quantique
III. eleven. Appendice : Le cadre math´ematique de l’espace de Hilbert "H
IV Les moments angulaires en th´eorie quantique
IV. 1. Fonctions propres et valeurs propres du second cin´etique orbital : M´ethode polynˆomiale
IV. 2. Sym´etrie de rotation et second angulaire
IV. three. M´ethode alg´ebrique : Les op´erateurs d’´echelle
IV. four. Repr´esentation matricielle des op´erateurs du second angulaire
IV. five. Le spin d’une particule
(IV. five. 1) Le second magn´etique de l’´electron
(IV. five. 2) Exp´erience de Stern et Gerlach
(IV. five. three) Vecteur d’´etat et op´erateur de spin
(IV. five. four) Pr´ecession du spin dans un champ magn´etique
(IV. five. five) Composition de deux moments angulaires
IV. 6. Appendice : Fonctions sp´eciales associ´ees au second angulaire
(IV. 6. 1) Polynˆomes de Legendre
(IV. 6. 2) Les harmoniques sph´eriques
V Particules dans un champ de strength central
V. 1. Le probl`eme de deux particules en th´eorie quantique
(V. 1. 1) Potentiel `a sym´etrie sph´erique
(V. 1. 2) Vibrations et rotations d’une mol´ecule
V. 2. L’atome hydrog´eno¨ıde
(V. 2. 1) Fonction d’onde totale et ses propri´et´es
V. three. constitution superb des atomes alcalins
(V. three. 1) Interactions spin-orbite
(V. three. 2) Corrections relativistes
V. four. Effet de Zeeman des atomes alcalins
(V. four. 1) Atome plac´e dans un champ magn´etique quelconque
(V. four. 2) Effet Zeeman anomal
(V. four. three) Effet Paschen-Back
V. five. Etats quantiques de l. a. mol´ecule diatomique
V. 6. Appendice : Propri´et´es des fonctions sp´eciales de l’atome hydrog´eno¨ıde
(V. 6. 1) Les polynˆomes de Laguerre associ´es
VI Transitions entre ´etats stationnaires
VI. 1. Mouvement d’une particule charg´ee soumise `a un champ ´electromagn´etique
(VI. 1. 1) Le hamiltonien du syst`eme
(VI. 1. 2) motion d’un champ magn´etique constant
(VI. 1. three) Invariance de jauge
VI. 2. Perturbations non stationnaires
(VI. 2. 1) R`egle d’or de Fermi
VI. three. Le rayonnement dipolaire
VI. four. Corrections multipolaires
VI. five. Expression quantique des coefficients d’Einstein
VI. 6. Coefficients d’absorption
VI. 7. R`egles de s´election et le spectre optique d’atome `a un ´electron
(VI. 7. 1) Les r`egles de s´election d’un oscillateur harmonique et d’un atome hydrog´eno¨ıde r´ealiste
VII advent `a los angeles th´eorie quantique non-relativiste des syst`emes
de particules identiques
VII. 1. Le formalisme g´en´eral
VII. 2. software `a l’atome d’h´elium
(VII. 2. 1) interplay d’´echange et magn´etisme
VII. three. L’approximation du champ self-consistant de Hartree et de Hartree-Fock
VIII creation `a l. a. th´eorie quantique de los angeles diffusion par un
potentiel
VIII. 1. part efficace de diffusion
(VIII. 1. 1) part efficace diff´erentielle dans le syst`eme du laboratoire
(VIII. 1. 2) Interpr´etation classique et loi de Rutherford
VIII. 2. Traitement stationnaire
(VIII. 2. 1) Equation int´egrale de l. a. diffusion et answer “approch´ee” : “Approximation de Born”
(VIII. 2. 2) Le r`egle d’Or de Fermi et l’approximation de Born
(VIII. 2. three) M´ethode des ondes partielles
Livres de r´ef´erence
– J. L. Basdevant, M´ecanique quantique, ellipses, 1986.
– J. Hladik, M´ecanique quantique, ´editions Masson, Paris, 1997.
Bibliographie
– D. Blokintsev, Principes de m´ecanique quantique, ´editions Mir, Moscou, 1981.
– J. M. L´evy-Leblond, F. Balibar, Quantique. Rudiments, Inter-Editions, Paris, 1984.
– Cl. Cohen-Tannoudji, B. Diu, F. Lalo¨e, M´ecanique quantique, tomes I & II, Hermann, 1980.
– E. Merzbacher, Quantum Mechanics, John Wiley, third ed. , 1998.
– S. Gasiorowicz, Quantum Physics, John Wiley, 1997.
– L. D. Landau, E. M. Lifshitz, Quantum Mechanics, Pergamon Press, third ed. , 1981.
– V. okay. Thankappan, Quantum Mechanics, John Wiley, 2d ed. , 1993.
– A. B. Wolbarst, Symmetry and Quantum Mechanics, Van Nostrand Reinhold Comp. , 1977.
– W. Louisell, Radiation and noise in Quantum Electronics, McGraw-Hill, 1964.
– A. Z. Capri, Nonrelativistic Quantum Mechanics, Benjamin/Cummings, 1985.
– J. J. Sakurai, glossy Quantum Mechanics, Benjamin/Cummings, 1985.
– W. Greiner, B. M¨uller, Quantum Mechanics, vol. I & II, Hermann, 1980.
– T. Fliessbach, Quantenmechanik, Spektrum Akademischer Verlag, 1995.
– R. W. Robinett, Quantum Mechanics, Oxford college Press, 1997.

Extra info for A Primer on the Physics of the Cosmic Microwave Background (2008)(en)(464s)

Sample text

Different choices for the pivot scale can be adopted, especially when not only the adiabatic mode is present in the game but also non-adiabatic modes (see chapter 8). Suppose now to combine the WMAP data with all the available data stemming, respectively, from other CMB experiments, from LSS observations, from supernovae and from lensing. 028 . Clearly there are slight differences in the determinations of some relevant cosmological parameters. e. h0 decreases (from Eq. 40) to Eq. 41)) by almost 3%.

28) Note that Γ is the homogeneous part of the decay rate. To first-order, the decay rate may be spatially inhomogeneous and this entails various interesting consequences which will be only marginally discussed in this book (see, however, [97, 98] and the discussion of chapter 12). It is relevant to stress that, owing to the form of the FRW metric, the homogeneous decay rate entails only exchange of energy between the fluids of the mixture. To January 22, 2008 10:56 World Scientific Book - 9in x 6in From CMB to the Standard Cosmological Model primer 37 first-order, the peculiar velocity fields will also be affected and the exchange of momentum is explicit.

15), we do get 3 a dS [ρ˙ γ + 3H(ργ + pγ )]. e. Eq. 12)) is enforced. Different physical fluids will also imply different equations of state. 18) where uµ is the peculiar velocity field of the (total) fluid still satisfying gµν uµ uν = 1. e. bosons or fermions in equilibrium at a temperature that is far below the threshold of pair production) leads naturally to an equation of state p = 0 (often called dusty equation of state). Another example could be a homogeneous scalar field whose potential vanishes exactly (see section 5).

Download PDF sample

Rated 4.63 of 5 – based on 43 votes